Die Parabel f(x) = x^2 + x + 41 hat für alle ganzzahligen x im Interwall [ -40; 39 ] stets Primzahlen als Funktionswerte.
x | -40 | -39 | -38 | -37 | -36 |
f(x) | 1601 | 1523 | 1447 | 1373 | 1301 |
x | -35 | -34 | -33 | -32 | -31 |
f(x) | 1231 | 1163 | 1097 | 1033 | 971 |
x | -30 | -29 | -28 | -27 | -26 |
f(x) | 911 | 853 | 797 | 743 | 691 |
x | -25 | -24 | -23 | -22 | -21 |
f(x) | 641 | 593 | 547 | 503 | 461 |
x | -20 | -19 | -18 | -17 | -16 |
f(x) | 421 | 383 | 347 | 313 | 281 |
x | -15 | -14 | -13 | -12 | -11 |
f(x) | 251 | 223 | 197 | 173 | 151 |
x | -10 | -9 | -8 | -7 | -6 |
f(x) | 131 | 113 | 97 | 83 | 71 |
x | -5 | -4 | -3 | -2 | -1 |
f(x) | 61 | 53 | 47 | 43 | 41 |
x | 0 | 1 | 2 | 3 | 4 |
f(x) | 41 | 43 | 47 | 53 | 61 |
x | 5 | 6 | 7 | 8 | 9 |
f(x) | 71 | 83 | 97 | 113 | 131 |
x | 10 | 11 | 12 | 13 | 14 |
f(x) | 151 | 173 | 197 | 223 | 251 |
x | 15 | 16 | 17 | 18 | 19 |
f(x) | 281 | 313 | 347 | 383 | 421 |
x | 20 | 21 | 22 | 23 | 24 |
f(x) | 461 | 503 | 547 | 593 | 641 |
x | 25 | 26 | 27 | 28 | 29 |
f(x) | 691 | 743 | 797 | 853 | 911 |
x | 30 | 31 | 32 | 33 | 34 |
f(x) | 971 | 1033 | 1097 | 1163 | 1231 |
x | 35 | 36 | 37 | 38 | 39 |
f(x) | 1301 | 1373 | 1447 | 1523 | 1601 |